Pretty Simple Loop Recurrence

Snippets Page

This diagram shows the strategy for obtaining a simple loop recurrence. The diagram is very symmetric, making it visually appealing.

prettysimplerecurrence.png

Source Code

\tikz[shift={(0,.3)},rotate=22.5]{
    \draw[blue,trivalent](0,0)circle(.8)node[shift={(0:.35)}]{$1$};
    \draw[trivalent](0,0)circle(1)
    \foreach\xa/\xb in {67.5/n,22.5/1,-22.5/2,-67.5/3,-112.5/4,-157.5/5}{
        node[basiclabel,shift={([rotate=22.5]\xa:1.1)}]{$b_\xb$}
    };
    \draw[trivalent]
    \foreach\xa/\xb in {45/1,0/2,-45/3,-90/4,-135/5,-180/6}{
        (\xa:1)--(\xa:1.5)node[basiclabel,shift={(\xa:.25)}]{$a_\xb$}
    };
    \draw[draw=none,rotate=15](135:1.3)to[bend left](90:1.3)node[pos=0]{.}node[pos=.5]{.}node[pos=1]{.};
}
\longrightarrow
\tikz[shift={(0,.3)},rotate=22.5]{
    \draw[trivalent]
    \foreach\xa/\xb in {45/1,0/2,-45/3,-90/4,-135/5,-180/6}{
        (\xa:1)--(\xa:1.5)node[basiclabel,shift={(\xa:.25)}]{$a_\xb$}
    };
    \foreach\xa in {45,0,-45,-90,-135,-180}{
        \draw[blue,trivalent,rotate=\xa](10:1)to[bend left=45](35:1);
        \draw[trivalent,rotate=\xa](10:1)to[bend right=45](35:1);
        \draw[purple,trivalent,rotate=\xa](-10:1)to[bend right](10:1);
    }
    \draw[purple,trivalent,rotate=90](-10:1)..controls+(80:.3)and+(100:-.3)..(10:1);
    \draw(0,0)
    \foreach\xa/\xb in {67.5/n,22.5/1,-22.5/2,-67.5/3,-112.5/4,-157.5/5}{
        node[basiclabel,shift={([rotate=22.5]\xa:1.15)}]{$b_\xb$}
    };
    \draw[draw=none,rotate=15](135:1.3)to[bend left](90:1.3)node[pos=0]{.}node[pos=.5]{.}node[pos=1]{.};
}
\longrightarrow
\tikz[shift={(0,.3)},rotate=22.5]{
    \draw[trivalent]
    \foreach\xa/\xb in {45/1,0/2,-45/3,-90/4,-135/5,-180/6}{
        (\xa:1)--(\xa:1.5)node[basiclabel,shift={(\xa:.25)}]{$a_\xb$}
    };
    \draw[purple,trivalent](0,0)circle(1)
    \foreach\xa/\xb in {67.5/n,22.5/1,-22.5/2,-67.5/3,-112.5/4,-157.5/5}{
        node[basiclabel,shift={([rotate=22.5]\xa:1.1)}]{$b'_\xb$}
    };
    \draw[draw=none,rotate=15](135:1.3)to[bend left](90:1.3)node[pos=0]{.}node[pos=.5]{.}node[pos=1]{.};
}

This looks good, but the math requires you to be very cautious about the orientation of the vertices.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License