Transition Matrix
For a problem demonstrating probability of travel between various cities.
Source Code
\tikz{
\draw(-4,0)node[draw,ellipse](A){Aquaville};
\draw(0,2)node[draw,ellipse](B){Gotham};
\draw(4,0)node[draw,ellipse](C){Biltmore};
\draw(0,-2)node[draw,ellipse](D){Wanington};
\tikzstyle{every node}=[pos=.7,scale=.7]
\draw[->,thick](A)..controls(-2.5,1.25)and(-2.5,1.25)..(B)node[pos=.7,anchor=south]{$20\%$};
\draw[->,thick](A)..controls(-2.5,-1.25)and(-2.5,-1.25)..(D)node[pos=.7,anchor=north]{$10\%$};
\draw[->,thick](B)..controls(-1.5,.75)and(-1.5,.75)..(A)node[pos=.7,anchor=north]{$10\%$};
\draw[->,thick](B)..controls(2.5,1.25)and(2.5,1.25)..(C)node[pos=.7,anchor=south]{$10\%$};
\draw[->,thick](B)..controls(.5,0)and(.5,0)..(D)node[pos=.7,anchor=west]{$10\%$};
\draw[->,thick](C)..controls(1.5,.75)and(1.5,.75)..(B)node[pos=.7,anchor=south]{$20\%$};
\draw[->,thick](C)..controls(2.5,-1.25)and(2.5,-1.25)..(D)node[pos=.7,anchor=north]{$40\%$};
\draw[->,thick](D)..controls(-1.5,-.75)and(-1.5,-.75)..(A)node[pos=.7,anchor=north]{$20\%$};
\draw[->,thick](D)..controls(-.5,0)and(-.5,0)..(B)node[pos=.7,anchor=east]{$10\%$};
\draw[->,thick](D)..controls(1.5,-.75)and(1.5,-.75)..(C)node[pos=.7,anchor=south]{$10\%$};
}
page revision: 0, last edited: 17 Dec 2008 14:44