Trivalent Spin Networks & Identities
Various trivalent spin network diagrams.
Source Code
$$\tikz[heighttwo]{
\node[cloud,fill=red!20,draw=red!20!gray,inner sep=3pt](middle)at(0,1){??}
edge[trivalent]node[rightlabel,pos=1]{$x$}(0,-.5)
edge[trivalent,bend left=10]node[rightlabel,pos=1]{$i_1$}(-1.2,2.5)
edge[trivalent,bend left=10]node[rightlabel,pos=1]{$i_2$}(-.5,2.5)
edge[trivalent,draw=none]node[basiclabel]{$\cdots$}(.35,2.5)
edge[trivalent,bend right=10]node[rightlabel,pos=1]{$i_r$}(1,2.5);
}
$$
Identities
coming soon
Forks
\begin{equation}\label{eq:leftassocdiagram}
\tikz[heightthree,scale=1.5]{
\draw[trivalent](0,0)node[rightlabel]{$x$}to(0,1)to[bend left]node[leftlabel]{$m_{r-1}$}(-.5,1.5)
(0,1)to[bend right](1.5,3.5)node[rightlabel]{$i_r$}
(-1,2)to[bend left]node[leftlabel]{$m_2$}(-1.5,2.5)to[bend left]node[leftlabel]{$m_1$}(-2,3)
to[bend left](-2.3,3.5)node[leftlabel]{$i_1$}
(-2,3)to[bend right](-1.75,3.5)node[rightlabel]{$i_2$}
(-1.5,2.5)to[bend right](-1,3.5)node[rightlabel]{$i_3$};
\draw[dotdotdot,bend right](-.7,3)to(.7,2.5);
}
\end{equation}
page revision: 3, last edited: 11 Feb 2009 20:01